情景设计题.md 17 KB

了解分布式事务吗?

分布式事务一般满足CAP原则

CAP 是 Consistency、Availability、Partition tolerance 三个单词的缩写,分别表示一致性、可用性、分区容忍性。

  • 一个分布式系统最多同时满足一致性、可用性、分区容错性三项中的两项。

  • 一般来讲都会选择保证A和P,舍弃一致性,保证最终一致性。

1、2PC/XA方案

所谓的 XA 方案,即:两阶段提交,有一个事务管理器的概念,负责协调多个数据库(资源管理器)的事务,事务管理器先问问各个数据库你准备好了吗?如果每个数据库都回复 ok,那么就正式提交事务,在各个数据库上执行操作;如果任何其中一个数据库回答不 ok,那么就回滚事务。

这种分布式事务方案,比较适合单块应用里,跨多个库的分布式事务,而且因为严重依赖于数据库层面来搞定复杂的事务,效率很低,绝对不适合高并发的场景。

一般来说某个系统内部如果出现跨多个库的这么一个操作,是不合规的。如果你要操作别人的服务的库,你必须是通过调用别的服务的接口来实现,绝对不允许交叉访问别人的数据库。

2、TCC强一致性方案

TCC 的全称是:TryConfirmCancel

  • Try 阶段:这个阶段说的是对各个服务的资源做检测以及对资源进行 锁定或者预留
  • Confirm 阶段:这个阶段说的是在各个服务中执行实际的操作。
  • Cancel 阶段:如果任何一个服务的业务方法执行出错,那么这里就需要 进行补偿,就是执行已经执行成功的业务逻辑的回滚操作。(把那些执行成功的回滚)

这种方案说实话几乎很少人使用,但是也有使用的场景。因为这个事务回滚实际上是严重依赖于你自己写逻辑来实现回滚和补偿,会造成巨大的补偿代码量。

3、可靠消息最终一致性方案

基于 MQ 来实现事务。比如阿里的 RocketMQ 就支持消息事务。大概的意思就是:

  1. A 系统先发送一个 prepared 消息到 MQ,如果这个 prepared 消息发送失败那么就直接取消操作别执行了;
  2. 如果这个消息发送成功过了,那么接着执行本地事务,如果成功就告诉 MQ 发送确认消息,如果失败就告诉 MQ 回滚消息;
  3. 如果发送了确认消息,那么此时 B 系统会接收到确认消息,然后执行本地的事务;
  4. mq 会自动定时轮询所有 prepared 消息回调你的接口,问你,这个消息是不是本地事务处理失败了,所有没发送确认的消息,是继续重试还是回滚?一般来说这里你就可以查下数据库看之前本地事务是否执行,如果回滚了,那么这里也回滚吧。这个就是避免可能本地事务执行成功了,而确认消息却发送失败了。
  5. 这个方案里,要是系统 B 的事务失败了咋办?重试咯,自动不断重试直到成功,如果实在是不行,要么就是针对重要的资金类业务进行回滚,比如 B 系统本地回滚后,想办法通知系统 A 也回滚;或者是发送报警由人工来手工回滚和补偿。

4、最大努力通知方案

  1. 系统 A 本地事务执行完之后,发送个消息到 MQ;
  2. 这里会有个专门消费 MQ 的最大努力通知服务,这个服务会消费 MQ 然后写入数据库中记录下来,或者是放入个内存队列也可以,接着调用系统 B 的接口;
  3. 要是系统 B 执行成功就 ok 了;要是系统 B 执行失败了,那么最大努力通知服务就定时尝试重新调用系统 B,反复 N 次,最后还是不行就放弃。

如何设计一个高可用,高性能的系统?

高性能思维导图

1 无锁化

大多数情况下,多线程处理可以提高并发性能,但如果对共享资源的处理不当,严重的锁竞争也会导致性能的下降。面对这种情况,有些场景采用了无锁化设计,特别是在底层框架上。无锁化主要有两种实现,串行无锁和数据结构无锁。

1.1 串行无锁

无锁串行最简单的实现方式可能就是单线程模型了,如 redis/Nginx 都采用了这种方式。在网络编程模型中,常规的方式是主线程负责处理 I/O 事件,并将读到的数据压入队列,工作线程则从队列中取出数据进行处理,这种半同步/半异步模型需要对队列进行加锁,如下图所示:

单Reactor多线程模型

上图的模式可以改成无锁串行的形式,当 MainReactor accept 一个新连接之后从众多的 SubReactor 选取一个进行注册,通过创建一个 Channel 与 I/O 线程进行绑定,此后该连接的读写都在同一个线程执行,无需进行同步。

主从Reactor职责链模型

1.2 结构无锁

利用硬件支持的原子操作可以实现无锁的数据结构,很多语言都提供 CAS 原子操作(如 go 中的 atomic 包和 C++11 中的 atomic 库),可以用于实现无锁队列。

2 零拷贝

3 序列化

当将数据写入文件、发送到网络、写入到存储时通常需要序列化(serialization)技术,从其读取时需要进行反序列化(deserialization),又称编码(encode)和解码(decode)。序列化作为传输数据的表示形式,与网络框架和通信协议是解耦的。如网络框架 taf 支持 jce、json 和自定义序列化,HTTP 协议支持 XML、JSON 和流媒体传输等。

序列化的方式很多,作为数据传输和存储的基础,如何选择合适的序列化方式尤其重要。

4 池子化

池化恐怕是最常用的一种技术了,其本质就是通过创建池子来提高对象复用,减少重复创建、销毁的开销。常用的池化技术有内存池、线程池、连接池、对象池等。

5 并发化

5.1 请求并发

如果一个任务需要处理多个子任务,可以将没有依赖关系的子任务并发化,这种场景在后台开发很常见。如一个请求需要查询 3 个数据,分别耗时 T1、T2、T3,如果串行调用总耗时 T=T1+T2+T3。对三个任务执行并发,总耗时 T=max(T1,T 2,T3)。同理,写操作也如此。对于同种请求,还可以同时进行批量合并,减少 RPC 调用次数。

5.2 冗余请求

冗余请求指的是同时向后端服务发送多个同样的请求,谁响应快就是使用谁,其他的则丢弃。这种策略缩短了客户端的等待时间,但也使整个系统调用量猛增,一般适用于初始化或者请求少的场景。公司 WNS 的跑马模块其实就是这种机制,跑马模块为了快速建立长连接同时向后台多个 ip/port 发起请求,谁快就用谁,这在弱网的移动设备上特别有用,如果使用等待超时再重试的机制,无疑将大大增加用户的等待时间。

6 异步化

对于处理耗时的任务,如果采用同步等待的方式,会严重降低系统的吞吐量,可以通过异步化进行解决。异步在不同层面概念是有一些差异的,在这里我们不讨论异步 I/O。

6.1 调用异步化

在进行一个耗时的 RPC 调用或者任务处理时,常用的异步化方式如下:

  • Callback:异步回调通过注册一个回调函数,然后发起异步任务,当任务执行完毕时会回调用户注册的回调函数,从而减少调用端等待时间。这种方式会造成代码分散难以维护,定位问题也相对困难。

  • Future:当用户提交一个任务时会立刻先返回一个 Future,然后任务异步执行,后续可以通过 Future 获取执行结果。对 1.4.1 中请求并发,我们可以使用 Future 实现,伪代码如下:

    //异步并发任务
    Future<Response> f1 = Executor.submit(query1);
    Future<Response> f2 = Executor.submit(query2);
    Future<Response> f3 = Executor.submit(query3);
  
    //处理其他事情
    doSomething();
  
    //获取结果
    Response res1 = f1.getResult();
    Response res2 = f2.getResult();
    Response res3 = f3.getResult();
  • CPS

(Continuation-passing style)可以对多个异步编程进行编排,组成更复杂的异步处理,并以同步的代码调用形式实现异步效果。CPS 将后续的处理逻辑当作参数传递给 Then 并可以最终捕获异常,解决了异步回调代码散乱和异常跟踪难的问题。Java 中的 CompletableFuture 和 C++ PPL 基本支持这一特性。典型的调用形式如下:

  void handleRequest(const Request &req)
  {
    return req.Read().Then([](Buffer &inbuf){
        return handleData(inbuf);
    }).Then([](Buffer &outbuf){
        return handleWrite(outbuf);
    }).Finally(){
        return cleanUp();
    });
  }

6.2 流程异步化

一个业务流程往往伴随着调用链路长、后置依赖多等特点,这会同时降低系统的可用性和并发处理能力。可以采用对非关键依赖进行异步化解决。如企鹅电竞开播服务,除了开播写节目存储以外,还需要将节目信息同步到神盾推荐平台、App 首页和二级页等。由于同步到外部都不是开播的关键逻辑且对一致性要求不是很高,可以对这些后置的同步操作进行异步化,写完存储即向 App 返回响应,如下图所示:

企鹅电竞开播流程异步化

7 缓存

从单核 CPU 到分布式系统,从前端到后台,缓存无处不在。古有朱元璋“缓称王”而终得天下,今有不论是芯片制造商还是互联网公司都同样采取了“缓称王”(缓存称王)的政策才能占据一席之地。缓存是原始数据的一个复制集,其本质就是空间换时间,主要是为了解决高并发读。

  • 进程级缓存:缓存的数据直接在进程地址空间内,这可能是访问速度最快使用最简单的缓存方式了。主要缺点是受制于进程空间大小,能缓存的数据量有限,进程重启缓存数据会丢失。一般通常用于缓存数据量不大的场景。
  • 集中式缓存:缓存的数据集中在一台机器上,如共享内存。这类缓存容量主要受制于机器内存大小,而且进程重启后数据不丢失。常用的集中式缓存中间件有单机版 redis、memcache 等。
  • 分布式缓存:缓存的数据分布在多台机器上,通常需要采用特定算法(如 Hash)进行数据分片,将海量的缓存数据均匀的分布在每个机器节点上。常用的组件有:Memcache(客户端分片)、Codis(代理分片)、Redis Cluster(集群分片)。
  • 多级缓存:指在系统中的不同层级的进行数据缓存,以提高访问效率和减少对后端存储的冲击。以下图的企鹅电竞的一个多级缓存应用,根据我们的现网统计,在第一级缓存的命中率就已经达 94%,穿透到 grocery 的请求量很小。

8 分片

分片即将一个较大的部分分成多个较小的部分,在这里我们分为数据分片和任务分片。对于数据分片,在本文将不同系统的拆分技术术语(如 region、shard、vnode、partition)等统称为分片。分片可以说是一箭三雕的技术,将一个大数据集分散在更多节点上,单点的读写负载随之也分散到了多个节点上,同时还提高了扩展性和可用性。

数据分片,小到编程语言标准库里的集合,大到分布式中间件,无所不在。如我曾经写过一个线程安全的容器以放置各种对象时,为了减少锁争用,对容器进行了分段,每个分段一个锁,按照哈希或者取模将对象放置到某个分段中,如 Java 中的 ConcurrentHashMap 也采取了分段的机制。分布式消息中间件 Kafka 中对 topic 也分成了多个 partition,每个 partition 互相独立可以比并发读写。

  • 一致性哈希
  • 分库分表
  • 任务分片,例如Map/Reduce
  • 动态平衡,例如kafka的rebalance

9 存储

任何一个系统,从单核 CPU 到分布式,从前端到后台,要实现各式各样的功能和逻辑,只有读和写两种操作。而每个系统的业务特性可能都不一样,有的侧重读、有的侧重写,有的两者兼备,本节主要探讨在不同业务场景下存储读写的一些方法论。

9.1 读写分离

9.2 动静分离

9.3 冷热分离

9.4 重写轻读

10 队列

在系统应用中,不是所有的任务和请求必须实时处理,很多时候数据也不需要强一致性而只需保持最终一致性,有时候我们也不需要知道系统模块间的依赖,在这些场景下队列技术大有可为。

如何优化一个慢SQL?

在慢SQL的优化过程中,可以从以下五个角度去进行思考优化:SQL优化、资源占用、业务改造、数据减少、源头替换

1. sql优化

SQL语句的优化方式主要是通过选择合适的索引、优化查询语句、避免全表扫描等提高查询效率,减少慢SQL的出现

  • join优化,小表驱动大表,大表加索引
  • in & exists

in执行流程:查询子查询的表且内外表有关联时,先执行内层表的子查询,然后将内表和外表做一个笛卡尔积,然后按照条件进行筛选,得到结果集。所以相对内表比较小的时候,in的速度较快

exists执行流程:指定一个子查询,检测行的存在。遍历循环外表,然后看外表中的记录有没有和内表的数据一样的,匹配上就将结果放入结果集中

  • 建议使用not exists代替not in,not in使用的是全表扫描没有用到索引;而not exists在子查询依然能用到表上的索引
  • 使用索引

2. 资源占用

  • 锁资源等待:在读写很热的表上,通常会发生锁资源争夺,从而导致慢查询的情况
    • 谨慎使用for update
    • 增删改尽量使用到索引
    • 降低并发,避免对同一条数据进行反复修改
  • 网络波动:往客户端发送数据时发生网络波动导致的慢查询
  • 硬件配置:CPU利用率高,磁盘IO经常满载,导致慢查询

在高并发、高流量下,数据库所在机器的负载load过高也会导致SQL整体执行时间过长,这时可能需要从机器和实例的分配,分布式部署,分库分表,读写分离等角度进行优化

3. 业务改造

  • 是不是真的需要全部查出来,还是取其中的top N就能够满足需求了
  • 查询条件过多的情况下,能否前端页面提示限制过多的查询条件的使用
  • 针对实时导出的数据,涉及到实时查DB导出大量数据时,限制导出数据量 or 走T+1的离线导出是不是也是可以的
  • 现在业务上需要做数据搜索,使用了 LIKE “%关键词%” 做全模糊查询,从而导致了慢SQL。是不是可以让业务方妥协下,最右模糊匹配,这样就可以利用上索引了

4. 源头替换

Mysql并不是任何的查询场景都是适合的,如需要支持全模糊搜索时,全模糊的like是无法走到索引的。同时结合数据本身的生命周期,对于热点数据,可以考虑存储到缓存解决。因此针对不适合mysql数据源的情况,我们需要替代新的存储介质

  • 有like的全模糊的查询,比如基于文本内容去查订单信息,需要接搜索引擎解决
  • 有热点数据的查询,考虑是否要接缓存解决
  • 针对复杂条件的海量数据查询,可以考虑切换到OLAP(Online Analytical Processing),可以考虑接Hybrid DB或ADB通道
  • 有些场景Mysql不适用,需要用K-V的数据库,HBASE等列式存储的存储引擎

5. 数据减少

QL本身的性能已经到达极限了,但是耗时仍然很长,可能由于数据量或索引数据都比较大了。因此需要从数据量级减少的角度去处理

  • 使用分库分表。由于单表的数据量过大,例如达到千万级别的数据了,需要使用分库分表技术拆分后减轻单库单表的单点压力
  • 定时清理终态数据。针对已经状态为终态的业务单据或明显信息,可以使用idb历史数据清理的方式配置定时自动清理。如针对我们的仓储库存操作明细为完结状态的数据,我们只保留最近1天的数据在db中,其他直接删除,减少db查询压力
  • 统计类查询可以单独维护汇总数据表。参考数据仓库中的数据分层设计,基于明细数据,抽出一张指标汇总表,或7天/15天等的视图数据进行预计算。此类汇总表数据量级相比明细表下降很多,从而避免直接根据大量明细查询聚合造成慢sql

如何设计B站?

  • 用户推荐方向:可以从视频分类,然后按照用户标签去分析。
  • 缓存,可以用本地缓存,类似map/reduce批量去更新